2,242 research outputs found

    Brane World in a Topological Black Hole Bulk

    Get PDF
    We consider a static brane in the background of a topological black hole, in arbitrary dimensions. For hyperbolic horizons, we find a solution only when the black hole mass assumes its minimum negative value. In this case, the tension of the brane vanishes, and the brane position coincides with the location of the horizon. For an elliptic horizon, we show that the massless mode of Randall-Sundrum is recovered in the limit of large black hole mass.Comment: Latex, 8 pages, v2: Additional references, to appear in MPL

    Neurophysiology

    Get PDF
    Contains reports on three research projects.National Institutes of Health (Training Grant 5 TO1 EY00090)Bell Laboratories (Grant

    Quantum Creation of Topological Black Hole

    Get PDF
    The constrained instanton method is used to study quantum creation of a vacuum or charged topological black hole. At the WKBWKB level, the relative creation probability is the exponential of a quarter sum of the horizon areas associated with the seed instanton.Comment: Report-no change onl

    The binary black-hole problem at the third post-Newtonian approximation in the orbital motion: Static part

    Get PDF
    Post-Newtonian expansions of the Brill-Lindquist and Misner-Lindquist solutions of the time-symmetric two-black-hole initial value problem are derived. The static Hamiltonians related to the expanded solutions, after identifying the bare masses in both solutions, are found to differ from each other at the third post-Newtonian approximation. By shifting the position variables of the black holes the post-Newtonian expansions of the three metrics can be made to coincide up to the fifth post-Newtonian order resulting in identical static Hamiltonians up the third post-Newtonian approximation. The calculations shed light on previously performed binary point-mass calculations at the third post-Newtonian approximation.Comment: LaTeX, 9 pages, to be submitted to Physical Review

    General K=-1 Friedman-Lema\^itre models and the averaging problem in cosmology

    Full text link
    We introduce the notion of general K=-1 Friedman-Lema\^itre (compact) cosmologies and the notion of averaged evolution by means of an averaging map. We then analyze the Friedman-Lema\^itre equations and the role of gravitational energy on the universe evolution. We distinguish two asymptotic behaviors: radiative and mass gap. We discuss the averaging problem in cosmology for them through precise definitions. We then describe in quantitative detail the radiative case, stressing on precise estimations on the evolution of the gravitational energy and its effect in the universe's deceleration. Also in the radiative case we present a smoothing property which tells that the long time H^{3} x H^{2} stability of the flat K=-1 FL models implies H^{i+1} x H^{i} stability independently of how big the initial state was in H^{i+1} x H^{i}, i.e. there is long time smoothing of the space-time. Finally we discuss the existence of initial "big-bang" states of large gravitational energy, showing that there is no mathematical restriction to assume it to be low at the beginning of time.Comment: Revised version. 32 pages, 1 figur

    Role of immediate reconstruction for elderly breast cancer patients

    Get PDF
    With rising numbers of elderly women developing breast cancer, treatment options must evolve which take into consideration quality of life and functional status. Although fewer women at all ages are undergoing mastectomy, for those elderly women who undergo mastectomy, reconstruction options should be offered. Over the past 5 years, increasing numbers of elderly women are electing immediate reconstruction (IM)

    Estimates of the total gravitation radiation in the head-on black hole collision

    Full text link
    We report on calculations of the total gravitational energy radiated in the head-on black hole collision, where we use the geometry of the Robinson-Trautman metrics.Comment: 10 pages, 2 figures, LaTeX2

    Gravitational wave detectors based on matter wave interferometers (MIGO) are no better than laser interferometers (LIGO)

    Full text link
    We show that a recent claim that matter wave interferometers have a much higher sensitivity than laser interferometers for a comparable physical setup is unfounded. We point out where the mistake in the earlier analysis is made. We also disprove the claim that only a description based on the geodesic deviation equation can produce the correct physical result. The equations for the quantum dynamics of non-relativistic massive particles in a linearly perturbed spacetime derived here are useful for treating a wider class of related physical problems. A general discussion on the use of atom interferometers for the detection of gravitational waves is also provided.Comment: 16 pages, REVTeX4; minor changes, one figure and a few references were added, an additional appendix was included where we explain why, contrary to the claims in gr-qc/0409099, the effects due to the reflection off the mirrors cancel out in the final result for the phase shif

    Fate of Kaluza-Klein Bubble

    Full text link
    We numerically study classical time evolutions of Kaluza-Klein bubble space-time which has negative energy after a decay of vacuum. As the zero energy Witten's bubble space-time, where the bubble expands infinitely, the subsequent evolutions of Brill and Horowitz's momentarily static initial data show that the bubble will expand in terms of the area. At first glance, this result may support Corley and Jacobson's conjecture that the bubble will expand forever as well as the Witten's bubble. The irregular signatures, however, can be seen in the behavior of the lapse function in the maximal slicing gauge and the divergence of the Kretchman invariant. Since there is no appearance of the apparent horizon, we suspect an appearance of a naked singularity as the final fate of this space-time.Comment: 13 pages including 10 figures, RevTeX, epsf.sty. CGPG-99/12-8, RESCEU-6/00 and DAMTP-2000-30. To appear in Phys. Rev.

    Neurophysiology

    Get PDF
    Contains reports on five research projects.National Institutes of Health (Training Grant 5 TO1 EY00090)Bell Laboratories (Grant
    • …
    corecore